HPV Data Set

LACTIC ACID

CAS # 50-21-5

Dossier number 50215

OPPT NCIC

Substance information

CAS No. 50-21-57 EINECS Name: lactic acid

EC No. 200-018-0

TSCA Name: Propanoic acid, 2-hydroxy-, (2S)-

Molecular Formula C3H6O3

IUPAC Name: LACTIC ACID

Mol. Weight: 90

Physical status: liquid or white crystals

Colour: colourless to slightly yellow

Odour: nearly odourless

Most of the lactic acid nowadays is supplied in the L(+) form, the natural form. PURAC only manufacturers the L(+) form.

Substance information for the L(+) lactic acid is as follows:

CAS No. 79-33-4

EINECS Name: L(+) lactic acid EC No. 201-196-2

TSCA Name: Propanoic acid, 2-hydroxy-, (2S)-

Molecular Formula C3H6O3

IUPAC Name: L(+) LACTIC ACID

Mol. Weight: 90

Physical status: liquid or white crystals

Colour: colourless to slightly yellow

Odour: nearly odourless

This HPV data file typically contains information about L(+) lactic acid.

Chapter 1 Physico-chemical Data

Melting Point

Value:

≤ 54 degree C

Decomposition:

no at < 110 degree C

Sublimation:

no

Method:

other

GLP:

no data

Test substance:

100% crystalline pure product used

Boiling Point / Vapour pressure

Boiling point:

ca. 258 degree C at 1000 hPa

Vapour pressure:

ca. .0041 hPa at 20 degree C

Decomposition:

yes

Method: GLP: other no data

Remark:

solutions can polymerise on boiling

It is not possible to determine this value very accurate, because lactic acid tends to polymerise by a polycondensation reaction.

The boiling point of lactic acid at difference vapour pressures according to

- Aspen Database
- PURAC In-house Pure compound database

Table Boiling points of lactic acid at different pressures (Aspen Database)

Pressure (mbar)	Boiling temperature (°C)
1	79.6
5	101.9
10	112.8
50	141.8
100	156.2
200	172.1
400	189.8
600	201.0
800	209.4
1013	216.6

The vapour pressures of lactic acid as a function of the boiling temperature according to the Aspen formula (PLXANT).

PLXANT =
$$e^{-C1 + \frac{C2}{C3+T} + C4^{x}T + C5^{x}\ln T + C6^{x}T^{C7}}$$

: Vapour pressure (N/m² or Pa)

PLXANT

C1, C2 C3, C4, C5, C6, C7 : Regression coefficients for chemical compound

Γ : Boiling temperature (K)

Figure Vapour Pressure diagram

The regression coefficients are:

C2 = -18757 C6 = 0.000012998

C3 = 0 C7 = 2

C4 = 0

G.P.v.Lieshout measured the vapour pressure of lactic acid between 0 and 180 °C. **Table** Boiling points of lactic acid at different pressures

Temperature (°C)	Vapour Pressure (mbar)
0	0.0005
10	0.0015
20	0.0041
30	0.0107
40	0.0258
50	0.0588
60	0.1273
70	0.2629
80	0.5198

90	0.9877
100	1.8093
110	3.2042
120	5.5004
130	9.1736
140	14.8959
150	23.5938
160	36.5163
170	55.3114
180	82.1111

The vapour pressures of lactic acid as a function of the boiling temperature were fitted with the Aspen formula (PLXANT). The estimated atmospheric boiling point is about 258 °C.

PLXANT =
$$e^{-C1 + \frac{C2}{C3+T} + C4^xT + C5^x lnT + C6^xT^{C9}}$$

: Vapour pressure (N/m² or Pa)

PLXANT

C1, C2 C3, C4, C5, C6, C7

: Regression coefficients for chemical compound

: Boiling temperature (K)

Figure: Vapour Pressure diagram The regression coefficients are:

C1 = 32.4649

C5 = -0.376037

C2 = -8835.5

C6 = 0

C3 = 0

C4 = -0.003654

Density

Type: density

Value: >= 1.2255 g/cm³ at 20 degree C

Method: other GLP: yes

Test substance: Lactic acid 80%

Holten describes the liquid density of lactic acid solutions in water. **Table** Liquid Densities of aqueous lactic acid solutions at different temperatures.

Concentr ation	Temperature (°C)										
(wt%)	0	10	20	30	40	50	60	70	80	90	100
0	1.000	0.999	0.997	0.995	0.991	0.987	0.983	0.977	0.972	0.965	0.959
	4	7	9	3	9	8	1	8	0	8	1
10	1.026	1.025	1.022	1.018	1.014	1.009	1.004	0.998	0.991	0.985	0.977
	9	1	3	8	5	7	2	3	9	1	9
20	1.053	1.050	1.046	1.042	1.037	1.031	1.025	1.019	1.012	1.004	0.997
	5	5	8	4	3	7	6	0	0	7	0
30	1.080	1.076	1.071	1.066	1.060	1.054	1.047	1.040	1.032	1.024	1.016
	2	2	5	2	4	0	2	0	5	6	4
40	1.106	1.101	1.096	1.090	1.083	1.076	1.069	1.061	1.053	1.044	1.036
	9	9	4	2	6	6	2	4	3	9	3
50	1.133	1.127	1.121	1.114	1.106	1.099	1.091	1.082	1.074	1.065	1.056
	3	5	1	2	9	2	2	9	3	5	4
60	1.159	1.152	1.145	1.137	1.129	1.121	1.113	1.104	1.095	1.086	1.076
	1	4	3	7	9	6	1	3	3	1	6
70	1.183	1.176	1.168	1.160	1.152	1.143	1.134	1.125	1.116	1.106	1.096
	5	2	5	4	1	4	5	4	0	5	7
80	1.206	1.198	1.190	1.181	1.173	1.164	1.155	1.145	1.136	1.126	1.116
	1	3	2	8	1	2	0	6	0	3	3
90	1.226	1.218	1.210	1.201	1.192	1.183	1.174	1.164	1.155	1.145	1.135
	3	3	0	4	5	4	1	6	0	1	1
95	1.235	1.227	1.219	1.210	1.201	1.192	1.183	1.173	1.163	1.154	1.144
	4	4	0	4	5	4	1	6	9	1	1
100	1.243	1.235	1.227	1.218	1.209	1.200	1.191	1.182	1.172	1.162	1.152
	8	7	4	8	9	8	6	1	5	7	7

Liquid Density of pure lactic acid

The liquid density of pure lactic acid at difference temperatures according to:

- Aspen Database
- PURAC In-house Pure Component Database

Table Densities of lactic acid at different temperatures (ASPEN Database)

Temperature (°C)	Density (g/ml)
20	1.2255
30	1.2163
40	1.2069
50	1.1974
60	1.1878
70	1.1780
80	1.1681
90	1.1580
100	1.1478
110	1.1374
120	1.1268
130	1.1160
140	1.1051
150	1.0939
160	1.0825

The liquid densities of lactic acid as a function of the temperature according to the Aspen equation for liquid density (DNLDIP):

$$\text{DNLDIP} = \frac{\text{C1}}{\text{C2}^{1+(1-\frac{T}{\text{C3}})^{\text{C4}}}}$$

DNLDIP : Liquid density (kmole/m³)

C1, C2 C4 : Regression coefficients for chemical compound

C3 : Critical temperature (K)
T : Temperature (K)

Liquid density diagram

Table Densities of lactic acid at different temperatures (Purac In-house Pure Component Database)

Temperature (°C)	Density (g/ml)
0	1.2453
10	1.2364
20	1.2274
30	1.2183
40	1.2092
50	1.2000
60	1.1907
70	1.1813
80	1.1719
90	1.1623
100	1.1527
110	1.1429
120	1.1330
130	1.1231
140	1.1130
150	1.1028
160	1.0924

The liquid densities of lactic acid as a function of the temperature according to the Aspen equation for liquid density (DNLDIP):

DNLDIP =
$$\frac{C1}{C2^{1+(1-\frac{T}{C3})^{c4}}}$$

: Liquid density (kmole/m³)

DNLDIP

C1, C2 C4 : Regression coefficients for chemical compound

C3 : Critical temperature (K)

: Temperature (K)

Partition Coefficient

Partition Coeff.: octanol-water

log Pow: ca. -.62 at 20 degree C

Method: OECD Guide-line 117 "Partition Coefficient (n-octanol/water),

HPLC Method"

T

Year: 1987 GLP: yes

Solubility in water

Value: ca. 100 vol% at 25 degree C

pH value: ca. 1.2

pKa: 3.68 at 25 degree C
Descr.: of very high solubility

Method: other GLP: no data

Deg. product: not measured

Stable: yes

Remark: completely soluble at 25 degrees C

J.v.Krieken determined the phase diagram of lactic acid/ water. Due to practical problems the diagram wasn't completed, but the missing part was extrapolated.

Table Solubility of monomeric lactic acid in water

Temperature (°C)	Lactic acid (wt%)
-20	65.9
-15	68.8
-10	71.5
-5	74.2
0	76.7
5	78.6
10	81.3
15	83.5
20	86.1
25	87.6
35	92.7
40	95.1

Table Freezing point data of monomeric lactic acid in water

				-
Temperature ((°C)	Lactic acid	(wt%)	1

0	0
-5	18.6
-10	32.5
-15	41.9
-21	51.7

The eutectic point of lactic acid/water was calculated by extrapolation and is ca. 61.7 wt% lactic acid and -27.1 °C.

Figure Phase Diagram

Solubility of lactic acid in other solvents

J.v. Krieken investigated the solubility of pure lactic acid in a range of solvents by stirring the specific solvent with an excess of (S)-lactic acid crystals at a specific temperature. After separation of the solids from the liquid, the clear liquid was analysed on free acidity.

Table solubility of lactic acid in a range of solvents

Solvent	Solu	Solubility (wt%) of solution				
	10°C	20°C	30°C	40°C		
Methanol	73.8	78.6	82.8	88.1		
Ethanol	63.6	70.9	78.7	85.2		
1-Propanol	54.5	62.4	71.7	82.7		
2-Propanol	56.1	63.4	72.2	82.2		
1-Butanol	46.3	54.5	64.3	77.1		
2-Ethyl-1-hexanol	22.9	29.0	39.6	54.9		
Cyclohexane				0.04		
Hexane	< 0.01	< 0.01	< 0.01	0.02		

Toluene	0.06	0.11	0.24	0.50
Ethyl lactate	37.0	45.9	57.2	72.8
Butyl lactate	27.7	35.7	47.3	64.8
2-Ethylhexyl lactate	15.5	20.9	30.9	46.7
Ethyl acetate	27.1	39.9	56.2	72.9
Diethyl ether	23.8	38.7	59.8	
Diisopropyl ether	6.4	9.2	15.9	44.4
Tetrahydrofuran	58.4	65.1	72.4	82.9
Dichloromethane	0.59	1.02	2.7	
Chloroform	0.31	0.67	1.67	59.7
2-Butanone	40.7	52.9	67.3	81.6
Acetone	53.4	61.4	71.5	82.9

Viscosity

Test type:

other: ASPEN database; PURAC internal

Value:

ca. 53.52 mPa s (dynamic) at 20 degree C

The liquid viscosity of lactic acid at difference temperatures according to

- Aspen Database
- PURAC In-house Pure Component Database

The liquid viscosity of aqueous lactic acid solutions in water

- 0 88 wt% of Lactic Acid
- 90 110 wt% Lactic Acid

Table Viscosity of lactic acid at different temperatures (Aspen Database)

Temperature (°C)	Viscosity (cP)
20	53.52
30	33.26
40	21.29
50	14.01
60	9.44
70	6.51
80	4.59
90	3.29
100	2.40
110	1.78
120	1.34
130	1.03
140	0.79
150	0.62
160	0.49

The liquid viscosity of lactic acid as a function of the temperature according to the Aspen equation for liquid viscosity (MULDIP):

MULDIP =
$$e^{C1 + \frac{C2}{T} + C3^{N} \ln T + C4^{N}T^{C5}}$$

: Liquid viscosity (N*s/m² or Pa.s)

MULDIP

C1, C2 C3, C4, C5

: Regression coefficients for chemical compound

T : Temperature (K)

The regression coefficients are:

C1 = -14.403

C2 = 4097.9

C3 = -0.4407

C4 = 0

C5 = 0

Figure: Liquid Viscosity diagram

<u>Table 12</u> Viscosity of lactic acid at different temperatures (Purac In-house Pure Component Database) ²

Temperature (°C)	Viscosity (cP)
20	1342.33
30	579.14
40	280.59
50	150.73
60	88.80
70	56.81
80	39.14
90	28.83
100	22.54

The liquid viscosity of lactic acid as a function of the temperature according to the Aspen equation for liquid viscosity (MULDIP):

MULDIP: Liquid viscosity (N*s/m² or Pa.s)

C1, C2, C3, C4, C5: Regression coefficients for chemical compound

T: Temperature (K)

The regression coefficients are:

C1: 421.094 C2: 25091.4 C3: 59.1119 C4: 0 C5: 0

Figure: Liquid Viscosity diagram

References Chapter 1: Physico chemical data

- National Chemical Inventories
 Coden NCINF5
 ISSN: 1089-6279
- Handbook of Chemistry and Physics WEAST 66th Edition
- ASPEN database
- PURAC internal databank

page 14

Chapter 2 Environmental Fate and Pathways

Photodegradation

The photochemical oxidisation of lactic acid is discussed in "Lactic acid properties and chemistry of lactic acid and derivatives by C.H. Holten (1971)". The first observation that lactic acid is photosensitive was made in 1910 by Berthelot and Gaudechon, who irradiated calcium lactate and ethyl lactate with ultraviolet rays. They observed decomposition with the formation of gas containing carbon monoxide, carbon dioxide, hydrogen and methane.

Stability in Water

Lactic Acid (88% and 60% aqueous solutions) were investigated.

"The kinetics of degradation of Lactic Acid was done at elevated temperature, since the decomposition rates of lactic acid, (..) were too slow to obtain kinetic data within reasonable time. At the condition studied (25, 40, 80 and 120 degrees centigrade) the decompositions of these compounds followed apparent first order kinetics because the mean correlation coefficient was above 0.980.

Lactic acid was very stable in aqueous solutions at 80 degrees centigrade (less than 30% decomposition after 175 at 80 degrees) and degradation was not different when combined with the various excipients tested. The shelf lives determined for lactic acid ranged from 79 years when combined with isopropyl palmitate to 98 years when combined with sorbic acid.

Transport between Environmental Compartments

Type: other: see free texts RM.

Remark: Lactic acid is not volatile and it has a high biodegradation rate.

Therefor transport between compartments is no issue for this compound.

Biodegradation

Value 50% after 5 days and 67% after 20 days.

Breakdown

Product: L(+) lactic acid 80%

Method: BOD (Biochemical Oxygen Demand) and COD (Chemical Oxygen Demand) determinations were carried out for L(+) lactic acid usig the method described in teh Dutch guidenlines "water determination of biochemical oxygen demand after n days (BODn)" (NEN 6634) and "Water determination of chemical oxygen demand (COD" (NEN 6633) respectively, these methods are similar to those referred in the EC Test Guidelines C.8 and C.9 Two concentrations (2 mg/L and 4 mg/L) were tested. An oculum was prepared from activated sludge. Its microbial activity appeared to be sufficient although the control substance glucose and glutamic acid had a BOD5 of slightly less than the required value of 4.00 \pm 0.75 mg $\rm O_2/L$

References Chapter 2: Environmental fate and pathways

- Lactic Acid: properties and chemistry of lactic acid and derivatives by C.H. Holten,

1971, page 38

- TNO report R 92/018: BOD and COd of L(+) lactic acid according to EC test guidelines C.8 and C.9
- The ecotoxicity and the biodegradability of lactic acid, alkyl esters and lactate salts C.T. Bowmer et.al.
 Chemosphere, volume 37, No 7, pp 1317 - 1333, 1998
- Stability of lactic acid and glycolic acid in aqueous systems subjected to acid hydrolysis and thermal decomposition.
 M.M. de Villiers et.al.
 Journal of the society of cosmetic chemists, 48, 165-174 (August 1998)
- Handbook of Chemistry and Physics
 WEAST
 66th Edition

Chapter 3 Ecotoxicity

Acute/Prolonged Toxicity to Fish

Type: semistatic

Species: Brachydanio rerio (Fish, fresh water)

Exposure period: 48 hour(s)
Unit: mg/l

Analytical monitoring: yes

LC50: = 320 - calculated

Limit Test: no

Method: OECD Guide-line 203 "Fish, Acute Toxicity Test"

Year: 1992 GLP: yes

Test substance: 80% L(+) Lactic Acid

- Type: semistatic

Species: Brachydanio rerio (Fish, fresh water)

Exposure period: 96 hour(s)

Unit: mg/l Analytical monitoring: yes

NOEC: = 320 - measured/nominal

LC50: = 320 - calculated LC100: = 560 - calculated

Method: OECD Guide-line 203 "Fish, Acute Toxicity Test"

Year: 1982 GLP: yes

Test substance: 88% L(+) Lactic Acid

Remark: test solutions are not neutralised. It is more than likely

that the low pH value affected the survival of the fishes.

- Type: static

Species: Lepomis macrochirus (Fish, fresh water)

Exposure period: 96 hour(s)
Unit: mg/l
Analytical monitoring: yes

NOEC: = 56 - measured/nominal LC50: = 130 - measured/nominal LC50 24h: = 140 - measured/nominal LC50 48h: = 130 - measured/nominal

Limit Test: yes

Method: :

The study was conducted at the concentrations of 56; 100, 180; 320 and 560 mg/l. Ten fish with a mean weight of 0.37 g and a mean standard length of 24 mm, were exposed to each test concentration and control.

The procedures for static bioassay described in (1) and (2) below were used in this experiment.

(1) Committee on methods for Toxicity Tests with Aquatic Organisms (C.E. Stephan chairman). 1975. Methods for acute toxicity tests with fish, macro invertebrates and

amphibians.

Environmental Protection Agency, Ecological Research Series EPA 660/3-75-009, April 1975; 61p

(2) American Public Health Association. 1980. Standard methods for the examination of water and wastewater. 15th ed. Washington DC 1134p.

Year: 1984 GLP: ves

Test substance: 88% L(+) Lactic Acid

Conclusion:

The results of the four day static fish toxicity studies indicated a 96h LC50 of 103 (100 - 180) mg/l and a No-Observed-Effect Concentration of 56 mg/l. Abnormal effects of mortality and / or surfacing were observed during the 96 hour exposure period. The 24h LC50 was 140 mg/l and the 48h LC50 was 130 mg/l.

Type: static

Species: Salmo gairdneri (Fish, estuary, fresh water)

Exposure period: 96 hour(s)

Unit: mg/l Analytical monitoring: yes

NOEC: = 56 - measured/nominal LC50: = 130 - measured/nominal LC50 24h: = 150 - measured/nominal LC50 48h: = 130 - measured/nominal

Method:

The static fish bioassay was conducted in five gallon glass vessels containing 15 litres reconstituted water. The study was conducted at the nominal concentrations of 32, 56, 100,180 and 320 mg/l. Ten fish were exposed to each test concentration and control. Conclusion:

The results of the four day static fish toxicity studies using test substance are summarised below:

24-hour LC50 150 mg/l 48-hour LC50 130 mg/l

96-hour LC50 130 (100 - 180) mg/l

96-hour NOEC 56 mg/l

Acute Toxicity to Aquatic Invertebrates

- Type: static

Species: Daphnia magna (Crustacea)

Exposure period: 48 hour(s)
Unit: mg/I
Analytical monitoring: yes

 NOEC:
 = 180 - calculated

 EC50:
 = 240 - calculated

 EC100:
 = 320 - calculated

 EC 50 24h :
 = 240 - calculated

Limit Test:

Method: OECD Guide-line 202

Year: 1992

page 18

GLP:

ves

Test substance:

80% L(+) Lactic Acid

Remark:

test solutions are not neutralised. It is more than likely that the low pH values affected the mobility of the daphnia's.

Type:

static

Species:

Daphnia magna (Crustacea)

Exposure period:

48 hour(s)

Unit:

mg/l

Analytical monitoring:

ves

NOEC:

= 320 - measured/nominal

LC50 48h:

= 750 - measured/nominal

Limit Test:

yes

Method:

Five concentrations in duplicate of the test compound with ten Daphnia per 250 ml glass beaker were used. The concentrations were a logarithmic series ranging from 100 to 1000 mg/l and included a control. The procedure for static bioassay as described in (1) and (2) below were used.

(1) Methods of acute toxicity with fish, Macro invertebrates and Amphibians. Stephan, CE, chairman. 1975.

Committee on Methods for toxicity tests with aquatic organisms. US EPA Ecol. Res. Ser. 660/3-75009.

(2) American Public Health Association. 1980. Standard methods for the examination of Water and wastewater. 15th ed. Washington DC. 1134p.

Year

1984

GLP:

yes

Test substance: 88% L(+) Lactic Acid

Toxicity to Aquatic Plants e.g. Algae

Species:

Selenastrum capricornutum (Algae)

Endpoint:

growth rate

Exposure period:

70 hour(s)

Unit:

g/l

Analytical monitoring:

yes

NOEC:

= 1.9 - calculated

EC10:

= 2.3 - calculated

EC50:

= 3.5 - calculated

EC90:

= 5.4 - calculated

Method:

OECD Guide-line 201 "Algae, Growth Inhibition Test"

Year:

1982

GLP:

ves

Test substance:

80% L(+) neutralised L(+) lactic acid

Toxicity to Micro-organisms e.g. Bacteria

page 19

Type: other: laboratory incubations
Species: Escherichia coli (Bacteria)

Exposure period: 20 minute(s)

Unit: g/l

EC100 : = 15 - measured/nominal

Test substance: combinations of 1.0-1.5% lactic acid with 0.1%

sodium benzoate, or 0.1% hydrogen peroxide, or 0.005% glycerol monolaurate.

Result:

At 22C complete inactivation of E. coli O157:H7 was observed after 20 min. of exposure to 1.5% lactic acid plus 0.1% hydrogen peroxide.

Conclusion:

The mentioned treatment could potentially be used to inactivate or reduce E. coli O157:H7 populations on raw products

Type: other: laboratory incubations on lean beef muscle discs of Species: other bacteria: Listeria monoccytogenes, Yersinia

enterocolitica, Salmonella typhimurium, E.coli, Campylobacter jejuni, Staphylococcus

aureus, Pseudomonas fragi, Brochotrix thermosphacta.

Exposure period: 0 minute(s)

Remark: Acid temperature (20 & 50 C) and concentration (1%, 3%) and initial numbers of contaminating bacteria (log CFU/cm2 of 3-6) were the

variables studied.

Result: The bactericidal efficacy of lactic acid was often distinct for each organism. Bacterial numbers were maximally reduced with 3% acid at 55C. S.aureus: 1.4 log cycle; P. fragi: 2.3 log cycle; B. thermosphacta: 2.8 log cycle reduction.

References Chapter 3: Ecotoxicity

- Acute / Prolonged toxicity to fish
- TNO report R 91/295; The acute toxicity of L(+)-lactic acid to Brachydanio Rerio (OECD 203).
- Acute toxicity of L(+) lactic acid to Rainbow Trout (<u>Salmo Gairdneri</u>)
 Analytical Biochemistry Laboratories Inc.
 Columbia, MO
 1984
- Acute toxicity of L(+) lactic acid to Bluegill Sunfish (<u>Lepomis macrochirus</u>)
 Analytical Biochemistry Laboratories Inc.
 Columbia, MO
 1984
- Acute toxicity to aquatic invertebrates

page 20

- TNO-report R 91/ 294; The acute toxicity of L(+)-lactic acid to Daphnia Magna (OECD 202, 48h).
- Acute toxicity of L(+) lactic acid to <u>Daphnia Magna</u>
 Analytical Biochemistry Laboratories Inc.
 Columbia, MO
 1984
- Toxicity to aquatic plants e.g. algae
- TNO report R 92/009; Effect of L(+)-lactic acid on the growth of the alga Selenastrum Capricornutum (OECD 201).
- Toxicity to micro-organisms e.g. bacteria
- Food Microbiology 16: 75-82 (1999), Venkitanarayanan K.S., Zhao T., Doyle M.P., "Inactivation of E.coli 0157:H7 by combinations of GRAS chemicals and temperature".
- Greer G.G. and Dilts B.D., Factors affecting the susceptibility of meat borne pathogens and spoilage bacteria to organic acids.
 Food Research International 25: 355-362 (1992).

page 21

Chapter 4 Mammalian toxicity

Toxicokinetics, Metabolism and Distribution

- In Vitro/in vivo:

In vivo

Type:

Metabolism

Species:

mammal

Remark:

(L)-lactic acid is a natural functional metabolite in mammal, as mammalian fuel. According to the lactate shuttle concept, L-lactate represents a major means of distributing carbohydrate potential energy for oxidation and gluconeogenesis. The concept of a "lactate shuttle" (Brooks, 1998) is that during hard exercise, as well as other conditions of accelerated glycolysis, glycolic flux in muscle involves L-lactate formation regardless of the state of oxygenation. The production rate of endogenous (L)-lactate in the resting human is about 1.3 mol (70 kg/bw).24 h-1 (= 117 g/day).

Acute oral toxicity

LD50

Species:

rat

Strain: Sex: Charles River male/female

No. of Animals:

55

Doses:

3,162 / 3,548 / 3,981 / 4,467 / 5,012 / 5,623 / 6,310 mg

/kg bw

between 3543 and 4936 mg/kg bw

ing bit

 LD_{50} :

EPA OPP 81-1

Method:

1984

Year:

ves

Test substance:

L(+) lactic acid 80%

- LD100

Species:

rat

No. of Animals:

10

Vehicle:

water

Doses:

dose was daily increased: 0.25 ml till 4.5 ml lactic acid

50%

LD₁₀₀:

= 11250 mg/kg bw

Test substance:

L(+) lactic acid 80%

Remark:

2 Rats died after dosing with 3 ml = 7500 mg/kg bw. The animals had a 15% reduction in bw in 1 week. A single administration of large doses did not result in changes in carbon dioxide content or pH of the blood, but a considerable decrease in the pH of the urine.

Single dose toxicity

Species:

rat

L(+) lactic acid CAS # 50-21-5 // 79-33-4 HPV number 50215 page 22

Strain: Charles River Sex: male/female

No. of Animals: 10

Doses: 5 mg / kg bodyweight

Method: EPA OPP 81-1

Year: 1983 GLP: yes

Test substance: L(+) lactic acid 80%

Remark:

Test was done to establish clinical signs after single dose treatment

Conclusion:

Four males survived the 14-day duration of the study. One male and all females were found dead on the day of dosing (day 0), on day 1 or on day 10. No abnormal clinical signs were observed during the study.

Acute Inhalation Toxicity

- Type: other: Acute inhalation toxicity study

Species: rat

Strain: Fischer 344
Sex: male/female

No. of Animals: 10

Vehicle: other: aerosol
Doses: 7,94 mg/L (air)
Exposure time: 4 hour(s)

Method: EPA OPP 81-3

Year: 1987 GLP: yes

Test substance: L(+) lactic acid 80%

Conclusion:

Rapid breathing and eye tearing were observed during exposure. One rat from the treated group died on day 9. All other animals survived until the end of the study. Based on these results, the LC50 for L(+)Lactic Acid is greater than 7,94 mg/L.

Acute Dermal Toxicity

- Type: LD50 Species: rabbit

Value: > 2000 mg/kg bw

Method: OECD Guide-line 402 "Acute dermal Toxicity"

Type: other: Acute dermal toxicity

Species: rabbit

Strain: New Zealand white

Sex: male/female

No. of Animals: 10
Doses: 2 g/kg

Method: EPA OPP 81-2

Year: 1983 GLP: yes

Test substance: L(+) lactic acid 80%

Conclusion: All animals survived the 14-days duration of the study and gained body weight. No abnormal clinical signs were observed during the study. Severe erythema and severe oedema were observed at the test sites of all animals after removal on day 1. Erythema decreased in severity for 3 animals on day 12 or 14, and was not observed for one female on day 14.

Oedema decreased in severity for 8 animals and was not observed for one female on day 12 and for one male on day 14. Other dermal reactions observed at test sites included: blanching, necrosis, eschar formation, atonia, desquamation and denuded areas.

Skin Irritation

Species: rabbit Concentration: 88 %

Exposure: Occlusive Exposure Time: 4 hour(s)

No. of Animals: 12

Result: corrosive

Method: OECD Guide-line 404 "Acute Dermal

Irritation/Corrosion"

Year: 1981 GLP: yes

Test substance: L(+) lactic acid 88%

Remark:

Other studies have shown that the skin of albino rabbit is not the appropriate animal model when addressing the effects of lactic acid on human skin. This result is therefore not used for the classification.

Species: rabbit Concentration: 80 % Exposure: Occlusive

Exposure Time: 4 hour(s)

No. of Animals:

Result: not irritating

Method: OECD Guideline 404 "Acute Dermal

Irritation/Corrosion"

Year 1992 GLP: ves

Test substance: buffered lactic acid: BF S36 (38% l.a. + 38% sodium lactate, total 76% d.s.). BF S30 (60% l.a. + 20% sodium lactate, total 80% d.s.)

When lactic acid is mixed with sodium lactate (buffered

to pH 3.0 or 3.6), also in albino rabbits, all skin irritation scores are 0-0.

Test substance: two types of buffered lactic acid were tested: Purac BF S36 (buffered with Sodium hydroxide to pH 3.6) and Purac BF S30 (buffered with sodium hydroxide to pH 3.0)

Species: rabbit Exposure: Occlusive

Exposure Time: 24 hour(s) No. of Animals:

Vehicle:other: not applicableResult:highly irritatingMethod:EPA OPP 81-5

Year: 1983 GLP: yes

Test substance: L(+) lactic acid 80%

Conclusion: The observations ranged from: Severe erythema, blanching and yellow-brown colour of the skin, red exudate and skin missing.

No abnormal clinical signs were observed and no mortalities occurred prior to sacrifice after the 30- to 60 minutes.

Under the definition of CFR 49, 173.136, the product does not need to be classified.

- Species: guinea pig
Concentration: 88 %
Exposure: Occlusive

Exposure: Occlusive
Exposure Time: 4 hour(s)
Result: not irritating

Method: OECD Guide-line 404 "Acute Dermal

Irritation/Corrosion"

Year: 1981 GLP: yes

Test substance: L(+) lactic acid 88%

- Species pig

Concentration: L(+) lactic acid 88 %

Exposure: Occlusive Exposure Time: 4 hour(s)

No. of Animals: 3

|Result: not irritating

Method: both OECD Guideline 404 (1981) and Directive 84-449

B4

Year: 1981 GLP: yes

Remark: TNO believes the pig to be a more appropriate and representative animal model than the albino rabbit, when addressing the effects of lactic acid on human skin.

Eye Irritation

- Species: rabbit

Concentration: 20 % L(+) lactic acid

Vehicle: water Result: irritating

Method: Journal Officiel de la Republique Française procedure; eyes were examined after 1 and 24 h and after 2, 3, 4, and 7 days with fluorescent staining.

Year: 1973 GLP: yes

Result: In same study also 50% sodium lactate was tested,

page 25

which is not irritating. Instilled at 20% and 10% provoked significant ocular irritation :Acute Ocular Irritation Index (AOII) was 39.50 resp. 31.17. Only for the 10% dilution these lesions were reversible, 7 days after instillation.

Species:

hen

Concentration:

88 % 0.03 ml

Dose: Exposure Time:

17 minute(s)

Comment:

rinsed after

No. of Animals:

4

Vehicle:

none

Result:

highly irritating

Method:

chicken unucleated test

Year: GLP:

1996

Test substance:

ves

88% L(+) Lactic acid aqueous solution

Species:

hen

Concentration:

73 % 0.03 ml

Dose:

.17 minute(s)

Exposure Time: Comment:

rinsed after (see exposure time)

No. of Animals:

Vehicle:

L(+) Lactic acid buffered (pH 3.6) with Sodium Lactate

Result: highly irritating

Method:

Chicken enucleated eye test

Year: GLP:

1996 ves

Test substance:

73 - 84 % L(+) Lactic acid buffered

Species:

other

Concentration:

85 % other

Vehicle: Result:

irritating

Only formulation with pH 2.02 (face cream with 11.8% lactic acid 85%) was moderate severe irritant. The formulations with pH \geq 5.3 were minimal irritant.

Test condition: in vitro using the Eytex Assay (Avon Products, Inc, 1995). Most of the formulations were tested undiluted. pH of formulations varies from 7.52 to 2.02.

Sensitisation

Type:

Buehler Test

Species:

quinea pig

Concentration 1st: Induction 88 % active substance occlusive epicutaneous

2nd: Induction

25 % active substance occlusive epicutaneous 88 % active substance occlusive epicutaneous

3rd: Challenge No. of Animals:

10

Vehicle:

water

Result:

not sensitising

Classification:

not sensitising

Method: **EPA OPP 81-6**

1986 Year: GLP: ves

Test substance: L()+ lactic acid 88%

Conclusion: The reactions seen (very slight to moderate erythema. very slight to moderate oedema) were considered to be irritant reactions, not sensitive

reactions. The test article was not considered to be a dermal sensitiser.

Type: Guinea pig maximisation test

Species: guinea pig Result: not sensitising Classification: not sensitising

Repeated Dose Toxicity

Type: Sub-chronic

Species: rat

Route of administration: gavage Exposure period: 90 days Frequency of treatment: every day

Doses: 4 ml lactic acid 10% on 20 g of meal

Control Group: ves, concurrent no treatment

Result: No differences in appearance, gross observations at necropsy, or organ weights were observed between the test and control animals.

Changes in blood carbon dioxide were slight.

Type: Sub-chronic

Species: rat Sex: female

Sprague-Dawley Strain:

Route of administration: dermal Exposure period: 13 weeks

daily, 5 days/week Frequency of treatment: 886 mg/kg bw Doses:

yes, concurrent no treatment Control Group:

886 mg/kg LOAEL:

No significant gross observations, with the exception of Result: minimal skin irritation. Absolute brain weight and kidney-to-body weight ratios were increased for test animals. No lesions were observed at necropsy or at microscopic examination.

formulation (face cream containing 0.25% of lactic acid Conclusion: 85%) is safe in terms of cumulative toxicity. Based upon the exaggerated dose level used in this study for skin care products, dermal application is not likely to produce adverse effects under conditions of consumer use.

Sub-chronic Type:

Species: rat

male/female Sex: Fischer 344 Strain:

Route of administration: experiment I: calcium lactate dissolved in drinking water (up to 5%).

experiment II: up to 30% calcium lactate in diet.

Exposure period: 13 weeks Frequency of treatment: daily

Test substance: Calcium lactate as a salt of lactic acid.

Doses: 5, 2.5, 1.25, 0.6, 0.3 %

Control Group: yes, concurrent no treatment

Remark: Lactic acid tested as its Calcium salt. From this study the lactate part is relevant, should be separated from effects of the soluble Calcium intake.

Result: a <10 % decrease in body weight gain, all animals

survived. some haematological and biochemical parameters changed, but no severe lesions were found in microscopic examination in the experiment with ca-lactate mixed in the diet, the amount of calcium in the urine was significantly increased.

in the diet, the amount of calcium in the urine was significantly increased. Nephrocalcinosis and degeneration in kidneys observed. Indications that

Nephrocalcinosis was dependent on the low Ca/Phosphorus ratio of the synthetic diet.

Type: Sub-chronic
Species: Syrian hamster
Sex: male/female

Route of administration: other: Group 1 (control):Diet 1, contains 20% sucrose as carcinogenic diet; pure water to drink. Group 2: diet 1, mixed with 0.057 ml lactic acid 80%; pure water to drink. Group 3: same diet 1, but water containing 0.050% v/v lactic acid

Exposure period: 14 weeks

Frequency of treatment: daily ad libitum; animals of groups 2 & 3 ingest same

amount lactic acid.

Post exposure period: sacrificed and autopsy; also oral cavity (caries

incidence)

Control Group: yes, concurrent no treatment

Remark: pH of diet 1 is 5.55, of diet 2 is 5.12. pH of pure water is

6.8 and of water + lactic acid is 3.1.

Result: three groups same growth and health. No significant differences were found in the incidence or extent of carious lesions among the three groups.

Conclusion: dietary lactic acid did not play any important role in

development or progress of dental caries.

Genetic Toxicity 'in Vitro'

- Type: Ames test

System of testing: S. typhimurium strains TA97, TA98, TA100, TA104

Concentration: 0.5, 1.0, and 2.0 microliter lactic acid/plate

Metabolic activation: with and without

Result: negative

Type: Salmonella/microsome test (Ames test) and

chromosomal aberration test in vitro

System of testing: reverse mutation assays, and Chinese hamster

fibroblast cell line

Concentration: 10 mg/plate, resp. 1.0 mg/ml

Metabolic activation: without

L(+) lactic acid CAS # 50-21-5 // 79-33-4

HPV number 50215

Result:

negative

Type:

Chinese hamster ovary K1 cells, chromosomal aberration tests, and the pH relationship of the medium and clastogenic activity was

examined.

System of testing:

Cells were maintained in Ham's F12 medium,

supplemented with 10% foetal calf serum.

Concentration:

8-35 mM

Cytotoxic Concentration:

14-35 mM, when pH was <= 5.8

Metabolic activation:

with and without

Result:

When the culture medium was first acidified by the lactic acid dose and then neutralised to pH 6.4 or when medium is containing 30 mM HEPES as buffer, lactic acid was non-clastogenic.

Pseudo-positive reactions are seen as a result of non-physiological low pH.

Type:

review on several mutagenicity studies with lactic acid

and some lactates.

various

System of testing: Concentration:

various

Metabolic activation:

with and without

Result:

negative

Result:

the result of 11 studies is reviewed.

Genetic Toxicity 'in Vivo'

Due to the natural nature of L(+) lactic acid and the relative low contribution of "outside L(+) lactic acid" to the human metabolism, in vivo genotoxicity studies will not be required.

Carcinogenicity

Species:

rat

Sex:

male/female Fischer 344

Strain: Administration:

drinking water

Exposure period:

2 years

Frequency of treatment:

daily, ad lib.

Post exposure period:

Autopsy on rats that died during study and those killed at

the end. Examination macro-and microscopically for presence of non-neoplastic and

neoplastic lesions

Doses:

2.5 or 5 % Calcium lactate in the drinking water. Mean

total Calcium lactate intake for males was 329.4 g, resp. 625.4 g; for females 237.7 g,

resp. 412.1 g.

Result:

negative

Control Group:

yes, concurrent no treatment

GLP:

ves

Test substance:

The Calcium salt of lactic acid was tested

Remark:

Lactic acid tested as its Calcium salt. From this study the

lactate intake is relevant, should be separated from the Calcium effects of a soluble

Calcium salt.

- Species: rabbit Sex: female

Administration: drinking water Exposure period: 5 or 13 months Frequency of treatment: twice daily

Doses: 0.1-0.2 g/kg bw (5 months), and 0.1-0.7 g/kg bw (13

months)

Result: negative

Control Group: no data specified

Result: No tumors were reported after 5 or 16 months. Further

details not provided.

Toxicity to Fertility

The nature of the compound (part of human metabolism) does make toxicity studies to fertility not necessary

Developmental Toxicity/Teratogenicity

- Species: mouse
Sex: female
Strain: CD-1
Administration: gavage

Exposure period: gestational days 6-15

Frequency of treatment: daily
Duration of test: 10 days

Doses: 570 mg/kg bw/day

Control Group: yes, concurrent no treatment

NOAEL Maternal Toxicity: >= 570 mg/kg bw NOAEL Teratogenicity: >= 570 ml/kg bw

Result: Lactic acid was neither maternotoxic nor

embryofetotoxic when given orally to mice at 570 mg/kg bw/day on gestation days 6-

15.

References Chapter 4: Mammalian toxicology

Toxicokinetics, Metabolism and Distribution

- Brooks, G.A., (1998). Mammalian fuel utilisation during sustained exercise. Comparative Biochemistry and Physiology, Part B120, 89-107.
- Connor H. and Woods H.F.; 1982 Metabolic acidosis. Pitman.
 Books Ltd, London (Ciba Foundation symposium 87) p. 214-234.
- Wysokinska Z., A comparison of the effects of lactic acid and acetic acid on the rat organism.

Roczniki Panstwowego Zaktadu Hig. 3: 273-292 (1952).

page 30

Acute oral toxicity

- International Journal of Toxicology, Volume 17. Supplement 1(1998), page 83.
- International Journal of Toxicology, Volume 17. Supplement 1 (1998), page 96.
- Toxigenics study 410-1369
 Acute oral LD50 study in rats using L(+) lactic acid Toxigenics, Inc.
 1984
- J. Dental Res. 28: 282-287 (1949), Granados H., Glavind J., Dam H.
 "Observations on experimental dental caries III: the effect of dietary lactic acid".
- Toxicological evaluation of some food additives. Joint FAO/WHO Expert Committee on Food Additives. FAO Rome 1974.
 FAO Nutrition Meetings Report series No. 53 A, p.461-465
- Toxigenics study 410 1353
 Acute oral toxicity study in rats using L(+) lactic acid.
 Toxigenics Inc.
 1983

Acute Inhalation Toxicity

Acute inhalation toxicity study in the rat Final report I-7083.112 Microbiological Associates Inc. 1987

Acute Dermal Toxicity

- Book: Cutaneous toxicity (1977). Eds. V.A. Drill and P.Lazar, Academic Press New York.
- Int. J. Cosmet. Sci. 4: 67-79 (1982). Guillot J.P., Martini
 M.C. et al. "Safety evaluation of some humectants and moisturisers used in cosmetic formulations".
- International Journal of Cosmetic Science 18: 75-83 (1996),
 Smith W.P.; "Comparative effectiveness of alpha-hydroxy acids on skin properties".
- International Journal of Cosmetic Science 21: 33-40 (1999),
 Smith W.P.; "The effects oftopical L(+) lactic acid and ascorbic acid on skin whitening".
- International Journal of Toxicology, volume 17. supplement 1(1998);
 Report of the Cosmetic Ingredient Review expert panel. page 124-127.

page 31

Date: January 3, 2002.

Skin Irritation

- TNO Report V 87.405, Acute dermal irritation / corrosion study with lactic acid 88% in pigs.
- Inversk Research International (IRI). J.A.Cuthbert and S.M.A. Carr, "Lactic acid Q88: A skin Corrosivity test in Guinea Pigs". IRI report no. 3625 (sept. 1986).
- pages 111-126, R.C. Wester and H.I. Maibach, "Percutaneous absorption in man and animal".
- pages 155-162, J.F. Griffith and E.V. Buehler,
 "Prediction of skin irritancy and sensitising potential by testing with animals and man".
- International Journal of Toxicology Volume 17. supplement 1.
 (1998); Report of the Cosmetic Ingredient Review expert panel, pages 180-181
- International Journal of Toxicology Volume 17. supplement 1.
 (1998). Report of the Cosmetic Ingredient Review expert panel. page 99 and Table 23, p.114.
- TNO report V86.016, Acute dermal irritation / corrosion study with lactic acid 88% in albino rabbits.
- TNO Report V96.677. "Acute dermal irritation/corrosion study with Purac BF S36 and Purac BF S30 in albino rabbits".
- Toxigenics study 410-1354
 Acute dermal toxicity study in rabbits using L(+) lactic acid.
 Toxigenics, Inc.
 1983
- Toxigenics study 410-1355
 Primary dermal irritation study in rabbits using L(+) lactic acid
 Toxigenics, Inc
 1983

Eye Irritation

TNO report V96.157, Chicken Enucleated Eye Test with three samples of lactic acid;
 an alternative to the Draize eye irritation test with albino rabbits

Sensitisation

page 32

American Biogenics Corporation study 480-2750
 Dermal sensitisation study in guinea pigs
 American Biogenics Corporation
 1986

Repeated Dose Toxicity

- Eisei Shikenjo Hokuku 107: 78-83 (1989), Matsushima Y.,
 Onodera H., et al., "Subchronic Oral toxicity study of Calcium lactate in F344 rats".
- International Journal of Toxicology, volume 17. supplement 1 (1998);
 page 129. (report of Shubik and Hartwell, 1957 at FDA).
- Journal of Industrial Hygiene and Toxicology Vol. 23, p.259, (1941)
- Genetic Toxicity 'in Vitro'
- Food Chem. Toxic. 22: 623-636 (1984), Ishidate M.Jr., Sofuni
 T., et al., "Primary mutagenicity screening of food additives currently used in Japan".
- Mutation Research 206: 467-470 (1988), Al-Ani F.Y., and Al-Lami S.K.. "Absence of mutagenic activity of acidity regulators in the Ames Salmonella/microsome test".
- Mutation Research 240: 195-202 (1990), Morita T., Takeda K., and Okumura K.;
 "Evaluation of clastogenicity of formic acid, acetic acid and lactic acid on cultured mammalian cells".
- Genetic Toxicity 'in Vivo'

Carcinogenicity

- Food Chem. Toxic. 29: 589-594 (1991), Maekawa A., Matsushima Y., et al.. "Long-term Toxicity/Carcinogenicity study of Calcium lactate in F344 rats".

Toxicity to Fertility

Developmental Toxicity/Teratogenicity

- Res.Commun. Chem. Pathol. Pharmacol. 77: 95-106 (1992); Colomina M.T., Gómez M., et al.,

"Concurrent ingestion of lactate and Aluminium can result in developmental toxicity in mice".

lactic acid page 33 Date: January 3, 2002.